Debian Kernel Howto: differenze tra le versioni

Da Guide@Debianizzati.Org.
Vai alla navigazione Vai alla ricerca
m (→‎FAQ: aggiunta una FAQ)
m (→‎Bisogna usare l'initrd oppure no?: commentati link obsoleti)
 
(92 versioni intermedie di 24 utenti non mostrate)
Riga 1: Riga 1:
==Introduzione==
{{Versioni compatibili|Wheezy|Jessie|Testing_2015|Unstable_2015}}
== Introduzione ==
In Debian, il [[kernel]] Linux può essere ricompilato con il metodo standard (valido con tutte le distribuzioni, e quindi anche con Debian) oppure nel cosiddetto [[Debian-way]] (traduzione: ''metodo Debian'' o ''alla Debian'').


ACPI ('''Advanced Configuration and Power Interface''') � uno standard industriale aperto che definisce l'interfaccia tra S.O. e BIOS per l'amministrazione e la configurazione delle risorse di un PC. ACPI prevede che le informazioni a basso livello sul sistema (batteria, luminosit� LCD, pulsanti Fn, ecc.) siano contenute nella DSTD ('''Differentiated System Description Table''').  
Questa guida illustrerà il metodo Debian di compilare il kernel Linux. Questo metodo consiste nel creare un [[pacchetto]] Debian del kernel compilato per una sua facile installazione/disinstallazione.


Il problema principale del supporto ad ACPI in linux risiede nella nella presenza di errori (ma anche di controlli espliciti su alcune caratteristiche peculiari del S.O. soprastante) nella tabella DSDT: purtroppo, molti fornitori di hardware non sono in grado, o non vogliono fornire tabelle DSDT completamente funzionali secondo gli standard ACPI.
Tutti i passi descritti in questa guida non richiedono i permessi di [[root]]. Le uniche operazioni che richiedono l'intervento dell'amministratore della macchina sono l'installazione dei pacchetti necessari alla compilazione e l'installazione del pacchetto .deb creato alla fine del processo di compilazione.


Per questo motivo, per utilizzare appieno le possibilit� offerte da alcuni PC, soprattutto laptop, � necessario correggere la DSDT e istruire il kernel affinch� nel processo di boot carichi la tabella fornita da noi invece di quella fornita dal BIOS.
== Installazione dei pacchetti ==


==Aggiornamento del BIOS==
Avremo innanzitutto bisogno di alcuni pacchetti di base per compilare e pacchettizzare un kernel:
Per cominciare � indispensabile aggiornare il BIOS con l�ultima versione disponibile, sperando che la nuova versione contenga una tabella DSDT con meno errori della precedente :P.


==Installazione nel kernel del supporto ACPI==
<pre>
Per poter utilizzare ACPI � necessario disporre di un kernel in cui sia stato abilitato il supporto ACPI. Praticamente tutte le distribuzioni forniscono kernel precompilati con il supporto ACPI attivato. Nel caso, per�, vi trovaste a dover (o voler) compilare autonomamente un kernel con il supporto ACPI, le voci necessarie sono le seguenti:
# apt-get install module-init-tools kernel-package libncurses5-dev fakeroot
</pre>


<pre>ACPI (Advanced Configuration and Power Interface) Support --->
A questo punto è necessario installare il pacchetto Debian contenente i sorgenti del kernel. Per prima cosa, cerchiamo questo pacchetto:
    ACPI Support --->
        <*> AC Adapter
        <*> Battery
        <*> Button
        <*> Processor</pre>


==Strumenti per lavorare con le DSDT==
<pre>
Per poter leggere e compilare una DSDT � necessario il compilatore ASL di Intel, che in debian esiste gi� precompilato a partire da etch (attuale testing), altrimenti � liberamente disponibile per il download all'indirizzo:
$ apt-cache search linux-source | grep ^linux-source
<pre>http://developer.intel.com/technology/iapc/acpi/downloads.htm</pre>
linux-source-3.16 - sorgenti del kernel Linux per la versione 3.16 con patch Debian
 
linux-source - sorgenti del kernel Linux (metapacchetto)
Per utilizzare la DSDT corretta sono disponibili due metodi: il primo prevede l'applicazione di una [ftp://ftp.kernel.org/pub/linux/kernel/people/lenb/acpi/patches/release/ patch per il kernel] e l'inserimento della nuova DSDT direttamente nel kernel, che quindi  sar� da ricompilare ogni volta che si fanno cambiamenti alla DSDT.
linux-source-3.19 - Linux kernel source for version 3.19 with Debian patches
</pre>


Il secondo inserisce la nuova DSDT all'interno dell'initrd, e quindi non necessita la ricompilazione del kernel, a patto che nel vostro kernel sia stata inclusa una [http://gaugusch.at/kernel.shtml patch apposita]. Al momento la patch menzionata � inclusa nei kernel delle maggiori distribuzioni (sicuramente in Debian, Ubuntu, Suse, e Mandriva).  
{{Box|Nota|Ogni versione di Debian ([[unstable]], [[testing]], [[stable]]) utilizza in genere una certa versione del kernel e specifiche versioni di altri pacchetti ad esso correlati in modo tale che l'insieme sia il più possibile stabile. È quindi altamente consigliato usare la versione dei sorgenti del kernel che troveremo nei repository della nostra versione di Debian, a meno che non si sappia esattamente quello che si sta facendo.}}


===Installare il compilatore ASL===
Adesso installiamo il pacchetto dei sorgenti del kernel che intendiamo utilizzare. Notare che i sorgenti del kernel forniti con Debian sono leggermente differenti da quelli del [[kernel vanilla]] rilasciato dal team di Linus Torvalds ([http://kernel-handbook.alioth.debian.org/ch-source.html#s-changes maggiori informazioni qui]). Nel seguito prenderemo come esempio la versione 3.19 del kernel, sostituitela con qualsiasi altra versione vogliate usare.
Uno dei motivi per cui le DSDT sono spesso difettose � che vengono compilate con il compilatore fornito da Microsoft, invece che con quello fornito da Intel. Curiosamente i sistemi Microsoft riescono ad evitare gli errori commessi dal compilatore della stessa societ�, mentre, come si pu� immaginare, la stessa cosa non succede per Linux.


Per installare il compilatore Intel sufficiente avere nel <tt>sources.list</tt> un repository per etch, e impartire, da root, il comando
<pre>
<pre>
# aptitude install iasl
# apt-get install linux-source-3.19
</pre>
</pre>


Se invece avete scaricato i sorgenti, per avere il compilatore ASL funzionante � necessario compilarlo:
Alla fine dell'installazione verrà creato un file compresso con estensione .tar.xz nella directory <code>/usr/src</code> .
<pre>$ tar -zxvf acpica-unix-20050624.tar.gz
$ cd acpica-unix-20050624/compiler
$ make</pre>


===Ottenere una DSDT===
{{Box|Nota|Prima della versione 2.6.12 del kernel Linux, i pacchetti sorgenti e binari Debian si chiamavano rispettivamente <code>kernel-source-x.x.x</code> e <code>kernel-image-x.x.x</code> (invece dell'attuale denominazione <code>linux-source-x.x.x</code> e
� possibile ottenere la DSDT attualmente installata per poi correggere gli eventuali errori e problemi, copiandola da un file reso appositamente disponibile dal filesystem virtuale /proc:
<code>linux-image.x.x.x</code>). Questo perché è previsto l'inserimento di nuovi kernel (come GNU HURD e FreeBSD) all'interno di Debian. }}
<pre>$ cat /proc/acpi/dsdt > dsdt.dat</pre>


Ci� creer� un file '''dsdt.dat''' che contiene la DSDT compilata.  
== Configurazione del kernel ==
Per poterne leggere il contenuto � necessario decompilarla con il compilatore ASL appena installato:
=== Passi preliminari ===
<pre>$ iasl -d dsdt.dat</pre>
Per prima cosa è opportuno creare una directory in cui inserire i file da compilare. In questo caso si chiamerà "sorgenti" all'interno della nostra home directory, cambiatela a vostro piacimento:
<pre>
$ mkdir ~/sorgenti
</pre>
Spostiamoci nella directory appena creata e decomprimiamo al suo interno l'archivio compresso contenente i sorgenti del kernel:
<pre>
$ tar -xvf /usr/src/linux-source-3.19.tar.xz -C .
</pre>
{{Box|Nota|Fino alla versione 3.9 i sorgenti del kernel sono contenuti in un file compresso con estensione .tar.bz2, per cui il comando cambierà così:<pre>$ tar -xjvf /usr/src/linux-source-3.9.tar.bz2 -C .</pre>o equivalente in base al nome del file compresso.}}
A fine operazione verrà creata una nuova directory:
<pre>
$ ls
linux-source-3.19
</pre>
spostiamoci al suo interno e procediamo con i passi successivi.


Verr� generato un file di testo denominato '''dsdt.dsl''', che contiene la DSDT. Questo file pu� essere modificato con un normale editor di testi e modificato a seconda delle esigenze e dei problemi riscontrati.
Puliamo i sorgenti del kernel:


Per vedere quali sono i problemi spesso � sufficiente ricompilare il file ottenuto: il compilatore ASL fornir� una serie di warning sulle ottimizzazioni che � possibile fare (e le far� automaticamente) ed, eventualmente, segnaler� degli errori, la cui soluzione pu� essere, ad esempio, ricercata su internet.
<pre>
$ make-kpkg clean
</pre>


Ad ogni modo una lettura del codice della DSDT pu� essere istruttiva. Il linguaggio � abbastanza simile al C e con qualche minima conoscenza � possibile comprendere i principali costrutti logici.
Questo passaggio è inutile se è la prima volta che compilate il kernel, ma dalla seconda volta in poi diviene necessario per eliminare i file generati dalle precedenti compilazioni che potrebbero creare conflitti.


Nel codice di alcune DSDT � stato trovato un controllo (if .. then) sulla lunghezza del nome del S.O. soprastante (17 lettere, proprio come "Microsoft Windows") come requisito per l'attivazione di alcune funzioni dell'ACPI.
Ora, se avete installato un kernel precompilato che abbia la stessa versione del kernel che volete ricompilare potreste usare il suo file di configurazione come base di partenza per configurare il vostro kernel. A tal scopo basta copiare il file di configurazione che si trova in <code>/boot</code> (i file di configurazione dei kernel installati hanno come nome <code>config</code> seguito dalla versione del kernel) nella directory dei sorgenti.<br/>
Il nome del file da creare deve essere sempre ".config".
<pre>
$ cp /boot/config-3.19.1-amd64 .config
</pre>


Una volta corretti gli errori ricompilare il file '''dsdt.dsl'''.
C'è chi arriva anche a scaricare il pacchetto contenente il kernel semplicemente per il suo file di configurazione. Se avete banda da sprecare è possibile farlo. Tuttavia si può benissimo partire da zero senza copiare nessun file di configurazione.
       
<pre>$ iasl -tc dsdt.dsl</pre>


Verranno generati due file dalla compilazione:
=== Configurazione: <code>make menuconfig</code> ===
*: dsdt.hex


*: DSDT.aml
A questo punto, per configurare il nostro kernel, non ci resta che lanciare il comando:


{{ Warningbox | � possibile scaricare una custom DSDT gi� pronta e corretta da internet per molti portatili in commercio: http://acpi.sourceforge.net/dsdt/tables }}
<pre>
$ make menuconfig
</pre>
 
Vi apparirà un'interfaccia testuale dalla quale sarà possibile configurare le opzioni del kernel. ''Questo è il passaggio più delicato, nonché il più lungo e difficile''.  


===Un esempio: la mia DSDT===
Se dovete configurare un kernel per la prima volta prendetevi almeno un'ora di tempo ed iniziate con calma, leggendo tutte le pagine dell'help in linea. Uno dei vantaggi di un kernel ricompilato è la possibilità di ottenere un kernel estremamente piccolo e leggero proprio perché viene compilato il supporto per le sole periferiche e i soli filesystem effettivamente usati. In questo modo si ha un kernel piccolo e pochi moduli. Un kernel di questo tipo impiega anche molto meno tempo ad essere compilato. Per fare un esempio potrebbe impiegare sui 10 minuti su in athlon 1000, quando un kernel Debian ufficiale impiegherebbe sicuramente più di un'ora sulla stessa macchina. In definitiva, compilando un kernel snello, sarà possibile anche fare più prove ed ottimizzarlo quindi al meglio.


Nel mio sistema (PC desktop, scheda madre Chaintech) ho da qualche tempo un problema con l'inizializzazione delle porte USB, tale che circa nel 40% dei casi (ma mai due volte di seguito) il PC si blocca durante il boot, e devo riavviare forzatamente.
Per trovare quali moduli sono richiesti dal vostro hardware potete usare il comando <code>'''lspci'''</code> o meglio <code>'''lspci -v'''</code>. Inoltre risulta utilissimo consultare il database dei driver di Linux a [http://kmuto.jp/debian/hcl/ questo indirizzo]: inserendo semplicemente l'output di <code>lspci -n</code>, otterrete l'elenco dei moduli da compilare


Per cercare di risolvere la cosa ho analizzato la mia tabella DSDT.
Per approfondire la configurazione del kernel:
L'ho estratta, e quando ho provato a ricompilarla ho avuto il seguente output:
<pre>
$ iasl -tc dsdt.dsl


Intel ACPI Component Architecture
* [[esempio configurazione kernel]] nel nostro Wiki, per un semplice esempio;
ASL Optimizing Compiler version 20060113 [Jan 22 2006]
* [http://a2.pluto.it/a2/a219.htm#almltitle285 elementi della configurazione] per una descrizione più dettagliata delle varie voci. Questo è un capitolo della monumentale opera [http://a2.pluto.it/a2/ Appunti di Informatica Libera], per la quale tutti noi siamo grati all'autore '''Daniele Giacomini''';
Copyright (C) 2000 - 2006 Intel Corporation
* [http://kernel.xc.net/ Linux Kernel Configuration Archive]: potrete cercare le varie opzioni di configurazione di ogni versione del kernel.
Supports ACPI Specification Revision 3.0a


dsdt.dsl  290:    Method (\_WAK, 1, NotSerialized)
In bocca al lupo con la configurazione ;-).
Warning  2078 -                 ^ Reserved method must return a value (_WAK)


dsdt.dsl  318:            Store (Local0, Local0)
Una volta finita la configurazione, uscite e salvate i cambiamenti. A questo punto il file <code>~/sorgenti/linux-source-3.19/.config</code> conterrà la nostra configurazione del kernel.
Error    1048 -                         ^ Method local variable is not initialized (Local0)


dsdt.dsl  323:            Store (Local0, Local0)
{{Box|Nota|Se avete già ricompilato il vostro kernel e volete passare ad una versione più aggiornata, ma non troppo diversa (ad esempio: 2.6.30 --> 2.6.32), non conviene rifare tutta la configurazione da capo. D'altro canto non è neanche possibile usare il vecchio file di configurazione dato che nel nuovo kernel ci saranno voci in più e o in meno e sarebbe improponibile cercarle ad una ad una.
Error    1048 -                         ^ Method local variable is not initialized (Local0)


dsdt.dsl  2368:             Store (Local0, Local0)
Basta allora copiare il vecchio file di configurazione nella directory dei sorgenti del nuovo kernel e lanciare il comando:
Error    1048 -                        ^ Method local variable is not initialized (Local0)


ASL Input:  dsdt.dsl - 4804 lines, 160190 bytes, 1781 keywords
<pre>$ make oldconfig</pre>
Compilation complete. 3 Errors, 1 Warnings, 0 Remarks, 465 Optimizations
</pre>


in sostanza, c'� un errore ripetuto identico tre volte (<tt>Error 1048</tt>), oltre ad un warning. Andiamo a vedere le sezioni incriminate. La prima �:
in questo modo verranno fatte delle domande su come configurare ''le sole nuove voci'' presenti nel kernel. Se i due kernel sono troppo diversi questo metodo non conviene più dato che bisogna rispondere ad uno ad uno a tutte le domande sulle voci diverse. Sicuramente non conviene usarlo per il passaggio 2.4 --> 2.6.<br>
Un file "config" del vostro attuale kernel può essere trovato in <code>/boot</code> sotto il nome di <code>config-2.x.x</code>.<br/>
Se non sapete bene ciò che state facendo oppure avete dei dubbi, scegliete la risposta di default.
Notare che è possibile ricorrere ai comandi:
<pre>
<pre>
Scope (\_SI)
$ make olddefconfig
{
    Method (_MSG, 1, NotSerialized)
    {
        Store (Local0, Local0)
    }
    Method (_SST, 1, NotSerialized)
    {
        Store (Local0, Local0)
    }
}
</pre>
</pre>
Come si vede viene utilizzata due volte la variabile <tt>Local0</tt>, ma non viene mai dichiarata.
per accettare automaticamente le risposte di default, oppure:
 
Vediamo di capire almeno un minimo il significato di questo pezzo di codice.
La funzione <tt>Store</tt> � una funzione di assegnazione verso destra: alla variabile a destra viene assegnato il valore (o il valore della variabile) che si trova a sinistra.
 
In questo caso, per�, � evidente che questa assegnazione � del tutto inutile, perch� viene assegnato alla variabile <tt>Local0</tt> il valore che ha gi�, quindi per correggere l'errore non faccio altro che cancellare l'istruzione commentandola:
<pre>
<pre>
Scope (\_SI)
$ make oldnoconfig
{
    Method (_MSG, 1, NotSerialized)
    {
//        Store (Local0, Local0)
    }
    Method (_SST, 1, NotSerialized)
    {
//        Store (Local0, Local0)
    }
}
</pre>
</pre>
Come si vede i commenti sono marcati come in C.
per rispondere negativamente a tutte le domande (default "n") }}


Facendo questa correzione anche nelle altre posizioni segnalate vengono eliminati tutti gli errori, quindi passiamo al warning. Il codice � questo:
=== Alternative a <code>make menuconfig</code> ===
<pre>
Method (\_WAK, 1, NotSerialized)
{
    Store (0xFF, DBG1)
    SALD (0x00)
    SFAN (0xFF)
    Notify (\_SB.PCI0.PX40.UAR1, 0x00)
    If (OSFL)
    {
        Notify (\_SB.PWRB, 0x02)
    }
    Else
    {
        If (LEqual (RTCW, 0x00))
        {
            Notify (\_SB.PWRB, 0x02)
        }
    }
    Notify (\_SB.PCI0.USB0, 0x00)
    Notify (\_SB.PCI0.USB1, 0x00)
    Notify (\_SB.PCI0.USB2, 0x00)
    Notify (\_SB.PCI0.USB3, 0x00)
}
</pre>
Le ultime righe mi danno la prova che l'errore ha a che fare con le porte USB, come avevo gi� notato.


Cercando in rete scopro che il metodo <tt>\_WAK</tt>, che � una funzione utilizzata al risveglio da uno stato di risparmio energetico (o di spegnimento), deve restituire un valore, che indichi se l'operazione di risveglio � riuscita o meno.
Per completezza si segnalano le altre interfacce grafiche che è possibile usare per configurare il kernel al posto di <code>make menuconfig</code>.


Una possibile diagnosi del mio problema, a questo punto, � che in certi casi durante il boot viene richiamato questo metodo, e il sistema si blocca in attesa di un risultato, che per� non viene mai restituito. (N.d.A.: la diagnosi � evidentemente sbagliata, perch� il problema persiste :()
;<code>make xconfig</code>: per usare una interfaccia grafica '''QT''' per la configurazione (serviranno i [[pacchetto|pacchetti]] <code>libqt4-dev</code> e <code>pkg-config</code>);
;<code>make gconfig</code>: per usare una interfaccia grafica '''GTK''' per la configurazione.


Io non ho idea di come reperire, nel codice, l'informazione sull'esito dell'inizializzazione delle porte USB, quindi non mi � possibile correggere il codice in modo che assolva alla funzione per cui � stato scritto, ma posso usare un workaround, e fare in modo che restituisca comunque un esito positivo.  
Questi frontend non aggiungono niente di nuovo e sono pertanto funzionalmente equivalenti tra di loro. Per usarli sono però necessarie le librerie di sviluppo, rispettivamente, di ''QT'' e ''GTK''.


Per fare questo si trova (in rete), senza entrare nei dettagli, che � sufficiente aggiungere alla fine del metodo, subito prima dell'ultima parentesi graffa, la riga
== Compilazione del kernel ==
<pre>
Return(Package(0x02){0x00, 0x00})
</pre>
Dopo le correzioni il codice viene ricompilato senza errori ne' warning :D


Ora per� mi viene una curiosit�, e mi metto a cercare nel codice la scritta "Microsoft". Questo � quello che ne viene fuori:
Ora è venuto il momento di cominciare la compilazione, a tal scopo useremo <code>make-kpkg</code>. Vediamo come utilizzare velocemente questo tool per compilare il nostro kernel personalizzato:
<pre>
Method (\_SB.PCI0._INI, 0, NotSerialized)
{
    If (STRC (\_OS, "Microsoft Windows"))
    {
        Store (0x56, SMIP)
    }
    Else
    {
        If (STRC (\_OS, "Microsoft Windows NT"))
    {
        Store (0x58, SMIP)
        Store (0x00, OSFX)
        Store (0x00, OSFL)
    }
    Else
    {
    Store (0x57, SMIP)
    Store (0x02, OSFX)
    Store (0x02, OSFL)
    }
}
</pre>
Anche senza conoscere il linguaggio, il codice � facilmente interpretabile: "se il Sistema Operativo si chiama 'Microsoft Windows' assegna il valore (esadecimale) <tt>0x56</tt> alla variabile <tt>SMIP</tt>, se invece si chiama 'Microsoft Windows NT' assegna <tt>0x58</tt> alla variabile <tt>SMIP</tt> e zero alle variabili <tt>OSFX</tt> e <tt>OSFL</tt>; se il S.O. � diverso da quelli elencati assegna alle tre variabili, rispettivamente, <tt>0x57</tt>, <tt>0x02</tt> e <tt>0x02</tt>".


Per qualche motivo a me ignoto chi ha impostato questa DSDT ha fatto in modo di cambiare le funzionalit del sottosistema ACPI a seconda del S.O. che si usa. Poich questo non mi rende particolarmente felice, ho modificato il codice in questo modo, eliminando di fatto il controllo:
<pre>
<pre>
Method (\_SB.PCI0._INI, 0, NotSerialized)
$ fakeroot make-kpkg --append-to-version -nomepersonalizzato --revision=1 kernel_image
{
//    If (STRC (\_OS, "Microsoft Windows"))
//    {
//        Store (0x56, SMIP)
//    }
//    Else
//    {
//        If (STRC (\_OS, "Microsoft Windows NT"))
//    {
        Store (0x58, SMIP)
        Store (0x00, OSFX)
        Store (0x00, OSFL)
//    }
//    Else
//    {
//    Store (0x57, SMIP)
//    Store (0x02, OSFX)
//    Store (0x02, OSFL)
//    }
}
</pre>
</pre>
{{Box|Nota|Dopo la versione 3.0 del kernel make-kpkg è  considerato  deprecato il supporto è stato mantenuto per  retrocompatibilità il comando da dare ora è il seguente:
<pre>$ make KDEB_PKGVERSION=1.0 deb-pkg
</pre> Per il nomepersonalizzato si deve modificare il valore di CONFIG_LOCALVERSION del file .config (il file di configurazione che si trova nella cartella del sorgente) con il valore -nomepersonalizzato.
}}
Questo comando compilerà il nostro kernel e lo inserirà in un pacchetto Debian nella directory <code>~/sorgenti</code>.
Diamo uno sguardo alle opzioni usate:


Ora il mio sistema funziona un pochino meglio :-)
; <code>--append-to-version</code> : serve ad aggiungere un nome personalizzato al pacchetto che verrà aggiunto dopo il numero di versione, che in questo caso diventerà <code>''2.6.32-nomepersonalizzato''</code>;


Aggiornamento: ricontrollando il codice ho notato che le tre variabili <tt>SMIP</tt>, <tt>OSFX</tt> e <tt>OSFL</tt> vengono inizializzate altrove, e quindi, in sostanza, il presente codice � inutile (se non dannoso ;-)), quindi l'ho semplicemente eliminato.
; <code>--revision</code> : permette di impostare il numero di revisione del pacchetto, normalmente viene indicato con un numero intero;


; <code>kernel_image</code> : dice a make-kpkg di compilare l'immagine del kernel creare il pacchetto Debian.


Vorrei far notare che le correzioni che sono state fatte <b>non sono</b> delle <b>vere</b> correzioni, ma dei workaround: non ci si assicura che il codice faccia quel che deve fare, ma solo che non ci siano errori formali.
Se ad esempio compileremo per la seconda volta lo stesso kernel, per fare solo delle modifiche minori, può essere utile usare lo stesso nome per <code>--append-to-version</code> ed usare un numero di revisione maggiore. In questo modo quando installerete il pacchetto del kernel ricompilato questo sostituirà il pacchetto precedente. Al contrario se ricompilate un secondo kernel cambiando la stringa da appendere alla versione, il pacchetto del nuovo kernel conviverà tranquillamente col precedente.


Purtroppo la correzione <b>vera</b> di questi errori � al di l� delle nostre possibilit�, perch� richiede, oltre alla conoscenza del linguaggio di programmazione, una conoscenza approfondita di come si comporta il nostro hardware, e nella grande maggioranza dei casi queste informazioni sono tenute segrete.
In realtà il comando <code>'''make-kpkg'''</code> accetta molti ulteriori parametri (elencherò solo i più importanti per gli altri leggete l'amichevole pagina di manuale aka read the friendly manual):


==Aggiornare il Kernel==
; <code>--initrd</code> : da usare se state compilando un kernel che utilizza le immagini <code>initrd.img</code> (''vedi [[Debian_Kernel_Howto#Bisogna_usare_l.27initrd_oppure_no.3F|FAQ: Bisogna usare l'initrd_oppure no?]]'');
Come abbiamo gi� detto, � possibile inserire la tabella DSDT generata in modo statico nel kernel, oppure renderla disponibili tramite initrd.
; <code>--added-modules foo</code> : compila dei sorgenti esterni (presenti in <code>/usr/src/modules</code>) insieme al kernel, potete mettere più nomi separati da virgole;
; <code>--added-patches foo</code> : aggiunge delle patch al kernel, le patch possono essere molteplici separate da virgole;
; <code>--config</code> : sceglie quale frontend usare per configurare il kernel (config, menuconfig, xconfig, gconfig);
; <code>--zimage</code> : crea una zImage per il kernel;
; <code>--bzImage</code> : crea una bzImage per il kernel;
; <code>--mkimage</code> : qui potete passare dei parametri a <code>mkinitrd</code>, ad esempio se volete creare una immagine rom: <code>genromfs -d %s -f %s</code>;
; <code>--rootcmd foo</code> : per passare un comando a make-kpkg ad esempio fakeroot o sudo;
; <code>CONCURRENCY_LEVEL</code> : questa variabile è l'omonimo di <code>-j</code> per make, per usarla vi basta mettere il numero intero che desiderate usare (''$ CONCURRENCY_LEVEL=4 make-kpkg --blabla ecc.ecc...'' ).


*:Il primo metodo prevede di includere la DSDT nel kernel. Questo comporta la ricompilazione del kernel al termine della procedura. Se usate questo metodo avete bisogno del file '''dsdt.hex'''.
Come ultimo parametro dovremo mettere un'azione da compiere, vediamo le principali:


*:Il secondo metodo prevede di passare la DSDT al kernel durante il caricamento nella fase di boot tramite initrd. Se usate questo metodo avete bisogno del file '''DSDT.aml'''.
; <code>clean</code> : pulisce i sorgenti;
; <code>kernel_headers</code> : questo genera un pacchetto con gli header del kernel;
; <code>binary</code> : questo genera un nuovo pacchetto deb con i sorgenti, uno con gli header, uno con la documentazione e uno con l'immagine del kernel;
; <code>buildpackage</code> : pulisce i sorgenti e avvia "binary" (vedere sopra);
; <code>build</code> : compila solo l'immagine del kernel;
; <code>modules</code> : compila tutti moduli esterni sotto <code>/usr/src/modules</code> e genera un file <code>.diff</code> e un pacchetto sorgente;
; <code>modules_config</code> : permette di configurare i moduli esterni residenti in <code>/usr/src/modules</code> prima di compilarli;
; <code>modules_image</code> : crea i pacchetti deb dei moduli esterni residenti in <code>/usr/src/modules</code> senza il file .diff e senza creare un altro pacchetto sorgente;
; <code>modules_clean</code>: pulisce i sorgenti dei moduli esterni presenti in <code>/usr/src/modules</code>;
; <code>debian</code> : questo crea la directory <code>./debian</code> utile per compilare i kernel vanilla e patcharli alla maniera Debian.


Nel caso di sistemi multiprocessore è possibile velocizzare la compilazione aggiungendo <code>CONCURRENCY_LEVEL=n</code> dove n corrisponde al numero di processi che il compilatore usa in parallelo (normalmente si usa un processo in più rispetto al numero di processori presenti).
Per esempio se vogliamo compilare kernel su un PC dotato di un processore quadcore su può usare:


Il metodo initrd probabilmente preferibile, particolarmente se dovete fare diversi cambiamenti alla vostra DSDT, perch non richiede la ricompilazione del kernel per ogni nuova DSDT generata.
===Installazione Metodo statico===
necessario applicare una patch al kernel per far s che sia in grado di leggere la nuova DSDT.
Per fare questo ci spostiamo nella directory dove sono presenti i sorgenti:
<pre>
<pre>
$ cd /usr/src/linux-2.6.8
$ fakeroot CONCURRENCY_LEVEL=5 make-kpkg --append-to-version -nomepersonalizzato --revision=1 kernel_image --initrd kernel_headers
$ patch -p1 < /percorso_dove_avete_salvato_la_patch
</pre>
</pre>
{{Box|Nota|Data la deprecazione di make-kpkg ora per fare la stessa cosa si usa -jn dove n è il numero di processori il comando da dare ora è il seguente per una macchina a 4 core:
<pre>$ make KDEB_PKGVERSION=1 deb-pkg -j4
</pre>
}}


Se non appaiono errori, significa che la patch � stata applicata correttamente.
== Installazione nuovo kernel ==
Una volta finito torneremo alla riga di comando e ci sposteremo nella directory precedente (<code>~/sorgenti</code>) dove troveremo il pacchetto .deb del kernel appena compilato:


Copiamo il file dsdt.hex, rinominandolo in dsdt_table.h, nella directory dei sorgenti del kernel:
<pre>
<pre>
$ cp dsdt.hex /usr/src/linux-2.6.8/include/acpi/dsdt_table.h
$ cd ..
$ ls
...
linux-image-3.19.1_nomepersonalizzato_1_amd64.deb
...
</pre>
</pre>


Infine ricompiliamo il kernel. Se non ci sono errori al prossimo avvio del PC il supporto ACPI � caricato correttamente senza alcun problema.
Adesso possiamo installare il pacchetto con il nostro nuovo kernel ricompilato. Diventiamo quindi root con '''su''', e digitiamo:
 
===Installazione Metodo initrd===
Se usate un kernel standard Debian non � necessario ricompilare il kernel: � sufficiente posizionare la tabella DSDT nel posto giusto e ricreare l'initrd o l'initramfs.
Per fare questo dovete prima verificare se il vostro kernel usa l'initrd o l'initramfs.
I kernel Debian standard usano l'initramfs a partire dalla versione 2.6.14 compresa, ma per essere sicuri � sufficiente usare il comando <tt>file</tt>.
Per esempio nel mio sistema ho:
<pre>
<pre>
$ file /boot/initrd.img-2.6.12-1-686-smp
# dpkg -i linux-image-3.19.1_nomepersonalizzato_1_amd64.deb
/boot/initrd.img-2.6.12-1-686-smp: Linux Compressed ROM File System data, little endian \
size 5046272 version #2 sorted_dirs CRC 0x5c015a8f, edition 0, 2920 blocks, 338 files
</pre>
</pre>
che � un tipico initrd Debian e usa il cramfs, e anche
 
Se abbiamo LILO dovremo configurare <code>lilo.conf</code> aggiungendo le righe relative al kernel. Ricordatevi che, con LILO, per rendere effettive le modifiche bisogna aggiornare il [[MBR]] (Master Boot Record) con il comando:
 
<pre>
<pre>
$ file /boot/initrd.img-2.6.15-1-686-smp
# lilo -v
/boot/initrd.img-2.6.15-1-686-smp: gzip compressed data, from Unix, max compression
</pre>
</pre>
che invece un initramfs.


Distro diverse da Debian non usano il cramfs, e pu� darsi che a questa prima analisi si trovi comunque un file compresso con <tt>gzip</tt>: per indagare oltre � sufficiente decomprimere una copia del file (notate l'aggiunta del suffisso .gz, senza il quale <tt>gunzip</tt> rifiuta di decomprimere il file): l'initramfs � un archivio <tt>cpio</tt>.
Se abbiamo Grub, invece, non ci resta altro che riavviare :D. Tuttavia per approfondire le personalizzazioni che è possibile fare su Grub, potete leggere l'apposita sezione della [[Guida a Grub]]:
 
* [[Guida_a_Grub#Usare_update-grub|Guida a Grub: Usare update-grub]]
 
== Installare e gestire i moduli ==
 
Per compilare e creare automaticamente pacchetti .deb per moduli non presenti nei sorgenti del kernel, Debian fornisce un comodo strumento: [[Pagina di manuale di module-assistant|module-assistant]]. Per un uso interattivo basterà lanciarlo da root per installare i pacchetti, scaricare i sorgenti del modulo che interessa, compilarlo e creare un pacchetto Debian.
 
Per scegliere invece quali moduli fare partire all'avvio ci sono diverse strade.
 
# Se si usa l'hotplug, questi dovrebbe caricare automaticamente al boot tutti i moduli necessari. Per evitare il caricamento di certi moduli che possono creare conflitti basta inserirli in <code>'''/etc/hotplug/blacklist'''</code>.
# Se non si usa l'hotplug bisogna specificare manualmente quali moduli caricare all'avvio. Per far ciò basterà inserire i nomi dei moduli da caricare in <code>'''/etc/modules'''</code>, uno per riga. Se non vi va di editare un file di testo (o non ricordate esattamente i nomi dei moduli) potrete usare <code>'''modconf'''</code> che permette di scegliere interattivamente quali moduli caricare all'avvio.
 
== FAQ ==
=== Per aggiungere un modulo devo ricompilare tutto il kernel? ===
Dipende.


Se il modulo fa parte del kernel Debian (cioè il suo sorgente è contenuto nel pacchetto <code>kernel-source</code> del kernel) allora bisogna ricompilare il kernel. Tenete presente, tuttavia, che i kernel binari Debian includono già la maggior parte dei moduli presenti nei sorgenti del kernel. Per caricarli basta usare:
<pre>
<pre>
$ cp /boot/initrd.img-2.6.15-1-686-smp initramfs.gz
  # modprobe ''nomemodulo''
$ gunzip initramfs.gz
$ file initramfs
initramfs: ASCII cpio archive (SVR4 with no CRC)
</pre>
</pre>
 
Se il sorgente del modulo è invece pacchettizzato singolarmente (il nome di questi pacchetti comincia per <code>module-source</code>) '''non è necessario''' ricompilare il kernel.
Se usate l'initrd (da root):
Debian ci fornisce la comoda utility '''module-assistant''' che permette di scaricare, compilare e pacchettizzare un modulo del kernel. Basta lanciare il comando
<pre>
<pre>
# cp DSDT.aml /etc/mkinitrd/DSDT
  # m-a
# mkinitrd -o initrd-<versione>  <versione>
</pre>
</pre>
in cui <tt><versione></tt> � il nome della directory che contiene i moduli, e che trovate in <tt>/lib/modules/</tt>.
e una interfaccia ''dialog'' ci guiderà passo passo.
 
Si può usare il comando <code>module-assistant list-avaible</code> (o il diminutivo <code>m-a la</code>) per ottenere la lista completa dei moduli installabili con module-assistant. Per le altre innumerevoli opzioni potete leggere la pagina di manuale tradotta in italiano:
 
* [[Pagina di manuale di module-assistant]]
 
===Bisogna usare l'initrd oppure no?===
La risposta breve è: no non usatelo.
 
Di seguito la risposta lunga:
 
L'immagine initrd (ramdisk iniziale) serve per caricare dei moduli nel kernel prima che questo abbia l'accesso alla partizione di root. Quindi basta compilare questi moduli staticamente e non avremo mai bisogno di un ramdisk. Ma quali sono questi moduli che servono nelle prime fasi di avvio? Semplicemente i moduli che permettono di leggere la partizione di root, ovvero:
 
* il modulo del controller del proprio harddisk
* il modulo del filesystem della partizione di root
 
Completato questo passaggio si può procedere alla modifica del file: <pre>/etc/default/grub</pre><br/>
{{Warningbox|Si consiglia di eseguire questa modifica prima di installare il kernel privo di initrd per evitare di ritrovarsi con una macchina non avviabile.}}
 
Il suddetto file va modificato poiché, senza l'initrd, il nostro sistema non sarà in grado, in fase di avvio, di riconoscere i dischi attraverso gli UUID, ma solo per mezzo degli indirizzi <pre>/dev/sda</pre>
Con un editor di testo è necessario decommentare l'opzione <pre>#GRUB_DISABLE_LINUX_UUID=true</pre> rimuovendo il simbolo "#". Il passaggio conclusivo consiste nell'eseguire <pre># update-grub</pre> per aggiornare la configurazione di grub.<br/>
 
Per un kernel ricompilato, l'initrd è generalmente inutile e rende l'avvio leggermente più lento. È anche facile sbagliare se non attivate le giuste opzioni nel kernel (vedi [[#Ma se io devo usare l'initrd assolutamente?|FAQ successiva]]), in tal caso otterreste un <code>kernel panic</code> all'avvio. L'initrd serve soprattutto per i kernel ufficiali delle distribuzioni che devono supportare tutti i controller esistenti e una gran varietà di filesystem. Sarebbe assurdo compilare tutti questi supporti staticamente e quindi vengono inseriti come moduli nel ram disk. <--
 
*** ATTENZIONE *** PARTE COMMENTATA *** ATTENZIONE ***
 
L'initrd è necessario anche se si vuole usare un bootsplash, ma questa è un'altra storia:
 
* [[Old:Compilazione Kernel 2.6.11 con Bootsplash]]
* [[Old:Kernel2.6.10 - Framebuffer - Gensplash Patch]]
 
*** FINE PARTE COMMENTATA *** -->
 
La risposta lunga è quindi no, non usate l'initrd quando questo non sia strettamente necessario.
 
=== Ma il kernel non fa il boot senza initrd! ===
Vedi FAQ precedente. L'initrd non è necessario per fare il boot. Se il sistema non parte ciò dipende da una non corretta configurazione del kernel.
 
Questo è quasi sempre vero, ma ci sono delle eccezioni. In alcuni casi, quali ad esempio l'avvio da una memoria USB con filesystem di root nella stessa, può essere necessario fare uso di initrd affinché vengano generati correttamente i device (vedi sda1, sda2 ecc.). Questo pur avendo compilato tutti i moduli staticamente all'interno del kernel.
 
===Ma se io devo usare l'initrd assolutamente?===
Per usare l'intrd '''si deve''' compilare staticamente il supporto per l'initrd impostando le seguenti voci:


Se usate l'initramfs (sempre da root):
<pre>
<pre>
# cp DSDT.aml /etc/mkinitrd/DSDT.aml
Device Drivers  --->
# mkinitrd -o initrd-<versione<versione>
  Block devices  --->
    <*> RAM disk support
    (16) Default number of RAM disks
    (8192) Default RAM disk size (kbytes)
    [*]  Initial RAM disk (initrd) support
</pre>
</pre>
con le stesse avvertenze di prima.


Se il vostro kernel non comprende la patch che gli permette di leggere la DSDT nell'initrd, dovete ricompilarlo. Prima per� applicate la patch, spostandovi nella directory dove sono presenti i sorgenti:
A partire dal kernel 2.6.13 si usano di default immagini del filesystem in formato '''cpio''' per cui non è più necessario aggiungere il supporto al '''cramfs'''.
<pre>$ cd /usr/src/linux-2.6.8
 
$ patch -p1 < / percorso_dove_avete_salvato_la_patch</pre>
Con tale configurazione è possibile compilare il kernel con initrd aggiungendo semplicemente l'opzione <code>--initrd</code> al comando <code>make-kpkg</code>. Il pacchetto risultante conterrà degli script che creeranno l'immagine initrd in fase di installazione del pacchetto.
 
Attualmente (Squeeze) lo strumento in Debian che permette di creare l'immagine initrd è <code>update-initramfs</code> (fornito dal pacchetto <code>initramfs-tools</code>) e utilizzabile con kernel 2.6.13 o più recenti. Questo strumento aggiunge tutti i controller del disco e i supporti che potrebbero servire per il boot che sono stati compilati come moduli;
 
Per ulteriori informazioni sui kernel Debian e le immagini initrd:
 
* [http://kernel-handbook.alioth.debian.org/ch-initramfs.html Debian Linux Kernel Handbook: Managing the initial ramfs (initramfs) archive]
 
=== Posso usare make-kpkg con un kernel vanilla ===
Certamente, <code>make-kpkg</code> può essere usato indifferentemente sia con i sorgenti Debian del kernel di Linux che con i sorgenti del [[kernel vanilla]].  
 
I sorgenti Debian sono contenuti nei pacchetti <code>kernel-source-*</code> (o <code>linux-source-*</code> per i kernel dal 2.6.12 in poi) e sono installabili come usuali pacchetti con [[APT]].


Al momento in cui si scrive, se usate l'initramfs vi serve anche una seconda patch che trovate allo stesso indirizzo della prima (in futuro verranno probabilmente unificate).
I sorgenti vanilla devono essere scaricati manualmente da [http://www.kernel.org www.kernel.org]. Devono essere scompattati in <code>/usr/src</code>, e per il resto la procedura di compilazione è assolutamente identica al caso di sorgenti Debian.


Prima di compilare � necessario assicurarsi che i seguenti moduli (ramdisk e initrd) siano compilati staticamente nel kernel:
Nel caso di sorgenti vanilla, può essere interessante vedere l'opzione <code>debian</code> nella sezione [[Debian_Kernel_Howto#Compilazione_del_kernel|Compilazione del kernel]], tuttavia l'uso di tale parametro è del tutto opzionale.
 
===Errore con l'opzione <code>--revision</code> ===
Può capitare che, ricompilando il kernel variando il valore dell'opzione <code>--revision</code> venga rilevato un errore simile al seguente:
<pre>
<pre>
Device Drivers --->
I note that you are using the --revision flag with the value
    Block Devices --->
  2.
        <*> RAM disk support
However, the ./debian/changelog file exists, and has a different value
        [*] Initial RAM disk (initrd) support
  1.
</pre>
I am confused by this discrepancy, and am halting.</pre>
 
Questo problema è semplicemente dovuto al fatto che non si è pulito il tree dei sorgenti dopo la prima compilazione. Per ovviare basta dunque:
 
<pre>$ make-kpkg clean</pre>  
 
e rilanciare la compilazione.


Inoltre � necessario controllare che l�opzione '''Read DSDT from initrd''' sia selezionata nel menu delle opzioni ACPI:
===You are attempting to install a kernel image (version ''version-revision'') However, the directory /lib/modules/''version-revision'' still exists.===
Se si aggiorna il kernel ad una [[revisione]] successiva, durante l'installazione del pacchetto verrà fatta la seguente domanda:
<pre>
<pre>
Power management options (ACPI, APM) --->
You are attempting to install a kernel image (version 2.6.15.4-swsusp) However, the directory /lib/modules/2.6.15.4-swsusp still exists.  If this directory
    ACPI (Advanced Configuration and Power Interface) Support --->
belongs to a previous linux-image-2.6.15.4-swsusp package, and if you have deselected some modules, or installed standalone modules packages, this could be
        [*] Read DSDT from initrd
bad. However, if this directory exists because you are also installing some stand alone modules right now, and they got unpacked before I did, then this is
pretty benign.  Unfortunately, I can not tell the difference.
 
If /lib/modules/2.6.15.4-swsusp belongs to a old install of linux-image-2.6.15.4-swsusp, then this is your last chance to abort the installation of this
kernel image (nothing has been changed yet).
 
If this directory is because of stand alone modules being installed right now, or if it does belong to an older linux-image-2.6.15.4-swsusp package but you
know what you are doing, and if you feel that this image should be installed despite this anomaly, Please answer n to the question.
 
Otherwise, I suggest you move /lib/modules/2.6.15.4-swsusp out of the way, perhaps to /lib/modules/2.6.15.4-swsusp.old or something, and then try
re-installing this image. 
 
Stop install since the kernel-image is already installed? 
</pre>
</pre>


Se queste opzioni non sono abilitate, abilitarle e ricompilare il kernel. Se sono gi� abilitate non � necessario ricompilare il kernel ;-).  
La risposta da dare è '''<code>No</code>'''! L'avvertimento ci ricorda che i moduli del vecchio kernel (quello con la stessa versione ma numero di revisione diverso) verranno cancellati e sostituiti dai moduli del nuovo kernel.  


Ora il kernel � pronto ad accettare la DSDT con initrd.
Questo è il comportamento normale, infatti, nel caso non si voglia sostituire un vecchio kernel ma semplicemente installarne parallelamente uno nuovo (con la stessa identica versione) si sarebbe dovuta modificare la stringa dopo <code>--append-to-version</code> invece che quella dopo <code>--revision</code> (vedi sez. [[Debian_Kernel_Howto#Compilazione_del_kernel|Compilazione kernel]]).
Se non avete a disposizione i tool mkinitrd e/o mkinitramfs che Debian mette a disposizione � necessario modificare l'initrd che avete, ma prima di farlo � fortemente consigliato di farne una copia di backup:
 
<pre>
Se il kernel che si sta sostituendo è quello in esecuzione ''è necessario riavviare la macchina il prima possibile!''
# cp /boot/initrd-kernel-2.6.8.img /boot/initrd-kernel-2.6.8.img.bak
 
# echo -n "INITRDDSDT123DSDT123" >> /boot/initrd-kernel-2.6.8.img
== Link ==
# cat DSDT.aml >> /boot/initrd-kernel-2.6.8.img
</pre>


Riavviare e controllare se il supporto ACPI funziona. Ricordarsi di aggiornare i bootloader!
* [http://www.debian.org/doc/manuals/reference/ch-kernel.it.html Manuale di Riferimento Debian: Capitolo 7 - Il kernel Linux su Debian]
* [http://kernel-handbook.alioth.debian.org/index.html Debian Linux Kernel Handbook ]: ottimo documento sulla gestione dei kernel Debian delle relative patch (''in inglese'').
* [http://a2.pluto.it/a2/a219.htm#almltitle282 Appunti di informatica Libera: Kernel Linux]: Il capitolo dedicato al kernel della monumentale opera di ''Daniele Giacomini'' contiene sia istruzioni generiche che istruzioni per Debian. Inoltre c'è una descrizione dettagliata della configurazione delle varie voci del kernel!
* [http://kernel.xc.net/ Linux Kernel Configuration Archive]: database che permette di ricercare tra le voci di configurazione (e le loro descrizioni) per varie versioni di kernel.


==Siti ufficiali dei progetti==
Buon divertimento con Debian GNU/Linux!
* http://acpi.sourceforge.net
* http://www.acpi.info/


----
{{Autori
Autore: [[Utente:Net deity|Net deity]]
|Autore=[[Utente:Abortigeno|Abortigeno]]
|Verificata_da=
:[[Utente:TheNoise|~ The Noise]]
: [[Utente:Lorenzoz|Lorenzoz]] 09:57, 11 ott 2014 (CEST)
:[[Utente:Oscarandrea|Oscarandrea]]  14:50, 8 giu 2015 (CEST)
|Estesa_da=
:[[Utente:TheNoise|~ The Noise]]
:[[Utente:fw_crocodile| fw_crocodile]]
:[[Utente:Lorenzoz|Lorenzoz]] 09:57, 11 ott 2014 (CEST)
|Numero_revisori=3
}}


Rivisto e corretto: [[Utente:Tindal|Tindal]] 17:37, Gen 27, 2006 (EST)
[[Categoria:Linux]]

Versione attuale delle 11:40, 15 mag 2016

Edit-clear-history.png Attenzione. Questa guida è da considerarsi abbandonata, per via del tempo trascorso dall'ultima verifica.

Potrà essere resa obsoleta, previa segnalazione sul forum, se nessuno si propone per l'adozione.


Debian-swirl.png Versioni Compatibili

Debian 7 "wheezy"
Debian 8 "jessie"

Introduzione

In Debian, il kernel Linux può essere ricompilato con il metodo standard (valido con tutte le distribuzioni, e quindi anche con Debian) oppure nel cosiddetto Debian-way (traduzione: metodo Debian o alla Debian).

Questa guida illustrerà il metodo Debian di compilare il kernel Linux. Questo metodo consiste nel creare un pacchetto Debian del kernel compilato per una sua facile installazione/disinstallazione.

Tutti i passi descritti in questa guida non richiedono i permessi di root. Le uniche operazioni che richiedono l'intervento dell'amministratore della macchina sono l'installazione dei pacchetti necessari alla compilazione e l'installazione del pacchetto .deb creato alla fine del processo di compilazione.

Installazione dei pacchetti

Avremo innanzitutto bisogno di alcuni pacchetti di base per compilare e pacchettizzare un kernel:

# apt-get install module-init-tools kernel-package libncurses5-dev fakeroot

A questo punto è necessario installare il pacchetto Debian contenente i sorgenti del kernel. Per prima cosa, cerchiamo questo pacchetto:

$ apt-cache search linux-source | grep ^linux-source
linux-source-3.16 - sorgenti del kernel Linux per la versione 3.16 con patch Debian
linux-source - sorgenti del kernel Linux (metapacchetto)
linux-source-3.19 - Linux kernel source for version 3.19 with Debian patches
Info.png Nota
Ogni versione di Debian (unstable, testing, stable) utilizza in genere una certa versione del kernel e specifiche versioni di altri pacchetti ad esso correlati in modo tale che l'insieme sia il più possibile stabile. È quindi altamente consigliato usare la versione dei sorgenti del kernel che troveremo nei repository della nostra versione di Debian, a meno che non si sappia esattamente quello che si sta facendo.


Adesso installiamo il pacchetto dei sorgenti del kernel che intendiamo utilizzare. Notare che i sorgenti del kernel forniti con Debian sono leggermente differenti da quelli del kernel vanilla rilasciato dal team di Linus Torvalds (maggiori informazioni qui). Nel seguito prenderemo come esempio la versione 3.19 del kernel, sostituitela con qualsiasi altra versione vogliate usare.

# apt-get install linux-source-3.19

Alla fine dell'installazione verrà creato un file compresso con estensione .tar.xz nella directory /usr/src .

Info.png Nota
Prima della versione 2.6.12 del kernel Linux, i pacchetti sorgenti e binari Debian si chiamavano rispettivamente kernel-source-x.x.x e kernel-image-x.x.x (invece dell'attuale denominazione linux-source-x.x.x e

linux-image.x.x.x). Questo perché è previsto l'inserimento di nuovi kernel (come GNU HURD e FreeBSD) all'interno di Debian.


Configurazione del kernel

Passi preliminari

Per prima cosa è opportuno creare una directory in cui inserire i file da compilare. In questo caso si chiamerà "sorgenti" all'interno della nostra home directory, cambiatela a vostro piacimento:

$ mkdir ~/sorgenti

Spostiamoci nella directory appena creata e decomprimiamo al suo interno l'archivio compresso contenente i sorgenti del kernel:

$ tar -xvf /usr/src/linux-source-3.19.tar.xz -C .
Info.png Nota
Fino alla versione 3.9 i sorgenti del kernel sono contenuti in un file compresso con estensione .tar.bz2, per cui il comando cambierà così:
$ tar -xjvf /usr/src/linux-source-3.9.tar.bz2 -C .
o equivalente in base al nome del file compresso.

A fine operazione verrà creata una nuova directory:

$ ls
linux-source-3.19

spostiamoci al suo interno e procediamo con i passi successivi.

Puliamo i sorgenti del kernel:

$ make-kpkg clean

Questo passaggio è inutile se è la prima volta che compilate il kernel, ma dalla seconda volta in poi diviene necessario per eliminare i file generati dalle precedenti compilazioni che potrebbero creare conflitti.

Ora, se avete installato un kernel precompilato che abbia la stessa versione del kernel che volete ricompilare potreste usare il suo file di configurazione come base di partenza per configurare il vostro kernel. A tal scopo basta copiare il file di configurazione che si trova in /boot (i file di configurazione dei kernel installati hanno come nome config seguito dalla versione del kernel) nella directory dei sorgenti.
Il nome del file da creare deve essere sempre ".config".

$ cp /boot/config-3.19.1-amd64 .config 

C'è chi arriva anche a scaricare il pacchetto contenente il kernel semplicemente per il suo file di configurazione. Se avete banda da sprecare è possibile farlo. Tuttavia si può benissimo partire da zero senza copiare nessun file di configurazione.

Configurazione: make menuconfig

A questo punto, per configurare il nostro kernel, non ci resta che lanciare il comando:

$ make menuconfig

Vi apparirà un'interfaccia testuale dalla quale sarà possibile configurare le opzioni del kernel. Questo è il passaggio più delicato, nonché il più lungo e difficile.

Se dovete configurare un kernel per la prima volta prendetevi almeno un'ora di tempo ed iniziate con calma, leggendo tutte le pagine dell'help in linea. Uno dei vantaggi di un kernel ricompilato è la possibilità di ottenere un kernel estremamente piccolo e leggero proprio perché viene compilato il supporto per le sole periferiche e i soli filesystem effettivamente usati. In questo modo si ha un kernel piccolo e pochi moduli. Un kernel di questo tipo impiega anche molto meno tempo ad essere compilato. Per fare un esempio potrebbe impiegare sui 10 minuti su in athlon 1000, quando un kernel Debian ufficiale impiegherebbe sicuramente più di un'ora sulla stessa macchina. In definitiva, compilando un kernel snello, sarà possibile anche fare più prove ed ottimizzarlo quindi al meglio.

Per trovare quali moduli sono richiesti dal vostro hardware potete usare il comando lspci o meglio lspci -v. Inoltre risulta utilissimo consultare il database dei driver di Linux a questo indirizzo: inserendo semplicemente l'output di lspci -n, otterrete l'elenco dei moduli da compilare

Per approfondire la configurazione del kernel:

In bocca al lupo con la configurazione ;-).

Una volta finita la configurazione, uscite e salvate i cambiamenti. A questo punto il file ~/sorgenti/linux-source-3.19/.config conterrà la nostra configurazione del kernel.

Info.png Nota
Se avete già ricompilato il vostro kernel e volete passare ad una versione più aggiornata, ma non troppo diversa (ad esempio: 2.6.30 --> 2.6.32), non conviene rifare tutta la configurazione da capo. D'altro canto non è neanche possibile usare il vecchio file di configurazione dato che nel nuovo kernel ci saranno voci in più e o in meno e sarebbe improponibile cercarle ad una ad una.

Basta allora copiare il vecchio file di configurazione nella directory dei sorgenti del nuovo kernel e lanciare il comando:

$ make oldconfig

in questo modo verranno fatte delle domande su come configurare le sole nuove voci presenti nel kernel. Se i due kernel sono troppo diversi questo metodo non conviene più dato che bisogna rispondere ad uno ad uno a tutte le domande sulle voci diverse. Sicuramente non conviene usarlo per il passaggio 2.4 --> 2.6.
Un file "config" del vostro attuale kernel può essere trovato in /boot sotto il nome di config-2.x.x.
Se non sapete bene ciò che state facendo oppure avete dei dubbi, scegliete la risposta di default. Notare che è possibile ricorrere ai comandi:

$ make olddefconfig

per accettare automaticamente le risposte di default, oppure:

$ make oldnoconfig

per rispondere negativamente a tutte le domande (default "n")


Alternative a make menuconfig

Per completezza si segnalano le altre interfacce grafiche che è possibile usare per configurare il kernel al posto di make menuconfig.

make xconfig
per usare una interfaccia grafica QT per la configurazione (serviranno i pacchetti libqt4-dev e pkg-config);
make gconfig
per usare una interfaccia grafica GTK per la configurazione.

Questi frontend non aggiungono niente di nuovo e sono pertanto funzionalmente equivalenti tra di loro. Per usarli sono però necessarie le librerie di sviluppo, rispettivamente, di QT e GTK.

Compilazione del kernel

Ora è venuto il momento di cominciare la compilazione, a tal scopo useremo make-kpkg. Vediamo come utilizzare velocemente questo tool per compilare il nostro kernel personalizzato:

$ fakeroot make-kpkg --append-to-version -nomepersonalizzato --revision=1 kernel_image
Info.png Nota
Dopo la versione 3.0 del kernel make-kpkg è considerato deprecato il supporto è stato mantenuto per retrocompatibilità il comando da dare ora è il seguente:
$ make KDEB_PKGVERSION=1.0 deb-pkg
Per il nomepersonalizzato si deve modificare il valore di CONFIG_LOCALVERSION del file .config (il file di configurazione che si trova nella cartella del sorgente) con il valore -nomepersonalizzato.

Questo comando compilerà il nostro kernel e lo inserirà in un pacchetto Debian nella directory ~/sorgenti. Diamo uno sguardo alle opzioni usate:

--append-to-version
serve ad aggiungere un nome personalizzato al pacchetto che verrà aggiunto dopo il numero di versione, che in questo caso diventerà 2.6.32-nomepersonalizzato;
--revision
permette di impostare il numero di revisione del pacchetto, normalmente viene indicato con un numero intero;
kernel_image
dice a make-kpkg di compilare l'immagine del kernel creare il pacchetto Debian.

Se ad esempio compileremo per la seconda volta lo stesso kernel, per fare solo delle modifiche minori, può essere utile usare lo stesso nome per --append-to-version ed usare un numero di revisione maggiore. In questo modo quando installerete il pacchetto del kernel ricompilato questo sostituirà il pacchetto precedente. Al contrario se ricompilate un secondo kernel cambiando la stringa da appendere alla versione, il pacchetto del nuovo kernel conviverà tranquillamente col precedente.

In realtà il comando make-kpkg accetta molti ulteriori parametri (elencherò solo i più importanti per gli altri leggete l'amichevole pagina di manuale aka read the friendly manual):

--initrd
da usare se state compilando un kernel che utilizza le immagini initrd.img (vedi FAQ: Bisogna usare l'initrd_oppure no?);
--added-modules foo
compila dei sorgenti esterni (presenti in /usr/src/modules) insieme al kernel, potete mettere più nomi separati da virgole;
--added-patches foo
aggiunge delle patch al kernel, le patch possono essere molteplici separate da virgole;
--config
sceglie quale frontend usare per configurare il kernel (config, menuconfig, xconfig, gconfig);
--zimage
crea una zImage per il kernel;
--bzImage
crea una bzImage per il kernel;
--mkimage
qui potete passare dei parametri a mkinitrd, ad esempio se volete creare una immagine rom: genromfs -d %s -f %s;
--rootcmd foo
per passare un comando a make-kpkg ad esempio fakeroot o sudo;
CONCURRENCY_LEVEL
questa variabile è l'omonimo di -j per make, per usarla vi basta mettere il numero intero che desiderate usare ($ CONCURRENCY_LEVEL=4 make-kpkg --blabla ecc.ecc... ).

Come ultimo parametro dovremo mettere un'azione da compiere, vediamo le principali:

clean
pulisce i sorgenti;
kernel_headers
questo genera un pacchetto con gli header del kernel;
binary
questo genera un nuovo pacchetto deb con i sorgenti, uno con gli header, uno con la documentazione e uno con l'immagine del kernel;
buildpackage
pulisce i sorgenti e avvia "binary" (vedere sopra);
build
compila solo l'immagine del kernel;
modules
compila tutti moduli esterni sotto /usr/src/modules e genera un file .diff e un pacchetto sorgente;
modules_config
permette di configurare i moduli esterni residenti in /usr/src/modules prima di compilarli;
modules_image
crea i pacchetti deb dei moduli esterni residenti in /usr/src/modules senza il file .diff e senza creare un altro pacchetto sorgente;
modules_clean
pulisce i sorgenti dei moduli esterni presenti in /usr/src/modules;
debian
questo crea la directory ./debian utile per compilare i kernel vanilla e patcharli alla maniera Debian.

Nel caso di sistemi multiprocessore è possibile velocizzare la compilazione aggiungendo CONCURRENCY_LEVEL=n dove n corrisponde al numero di processi che il compilatore usa in parallelo (normalmente si usa un processo in più rispetto al numero di processori presenti). Per esempio se vogliamo compilare kernel su un PC dotato di un processore quadcore su può usare:

$ fakeroot CONCURRENCY_LEVEL=5 make-kpkg --append-to-version -nomepersonalizzato --revision=1 kernel_image --initrd kernel_headers
Info.png Nota
Data la deprecazione di make-kpkg ora per fare la stessa cosa si usa -jn dove n è il numero di processori il comando da dare ora è il seguente per una macchina a 4 core:
$ make KDEB_PKGVERSION=1 deb-pkg -j4


Installazione nuovo kernel

Una volta finito torneremo alla riga di comando e ci sposteremo nella directory precedente (~/sorgenti) dove troveremo il pacchetto .deb del kernel appena compilato:

$ cd ..
$ ls
...
linux-image-3.19.1_nomepersonalizzato_1_amd64.deb
...

Adesso possiamo installare il pacchetto con il nostro nuovo kernel ricompilato. Diventiamo quindi root con su, e digitiamo:

# dpkg -i linux-image-3.19.1_nomepersonalizzato_1_amd64.deb

Se abbiamo LILO dovremo configurare lilo.conf aggiungendo le righe relative al kernel. Ricordatevi che, con LILO, per rendere effettive le modifiche bisogna aggiornare il MBR (Master Boot Record) con il comando:

# lilo -v

Se abbiamo Grub, invece, non ci resta altro che riavviare :D. Tuttavia per approfondire le personalizzazioni che è possibile fare su Grub, potete leggere l'apposita sezione della Guida a Grub:

Installare e gestire i moduli

Per compilare e creare automaticamente pacchetti .deb per moduli non presenti nei sorgenti del kernel, Debian fornisce un comodo strumento: module-assistant. Per un uso interattivo basterà lanciarlo da root per installare i pacchetti, scaricare i sorgenti del modulo che interessa, compilarlo e creare un pacchetto Debian.

Per scegliere invece quali moduli fare partire all'avvio ci sono diverse strade.

  1. Se si usa l'hotplug, questi dovrebbe caricare automaticamente al boot tutti i moduli necessari. Per evitare il caricamento di certi moduli che possono creare conflitti basta inserirli in /etc/hotplug/blacklist.
  2. Se non si usa l'hotplug bisogna specificare manualmente quali moduli caricare all'avvio. Per far ciò basterà inserire i nomi dei moduli da caricare in /etc/modules, uno per riga. Se non vi va di editare un file di testo (o non ricordate esattamente i nomi dei moduli) potrete usare modconf che permette di scegliere interattivamente quali moduli caricare all'avvio.

FAQ

Per aggiungere un modulo devo ricompilare tutto il kernel?

Dipende.

Se il modulo fa parte del kernel Debian (cioè il suo sorgente è contenuto nel pacchetto kernel-source del kernel) allora bisogna ricompilare il kernel. Tenete presente, tuttavia, che i kernel binari Debian includono già la maggior parte dei moduli presenti nei sorgenti del kernel. Per caricarli basta usare:

  # modprobe ''nomemodulo''

Se il sorgente del modulo è invece pacchettizzato singolarmente (il nome di questi pacchetti comincia per module-source) non è necessario ricompilare il kernel. Debian ci fornisce la comoda utility module-assistant che permette di scaricare, compilare e pacchettizzare un modulo del kernel. Basta lanciare il comando

  # m-a

e una interfaccia dialog ci guiderà passo passo.

Si può usare il comando module-assistant list-avaible (o il diminutivo m-a la) per ottenere la lista completa dei moduli installabili con module-assistant. Per le altre innumerevoli opzioni potete leggere la pagina di manuale tradotta in italiano:

Bisogna usare l'initrd oppure no?

La risposta breve è: no non usatelo.

Di seguito la risposta lunga:

L'immagine initrd (ramdisk iniziale) serve per caricare dei moduli nel kernel prima che questo abbia l'accesso alla partizione di root. Quindi basta compilare questi moduli staticamente e non avremo mai bisogno di un ramdisk. Ma quali sono questi moduli che servono nelle prime fasi di avvio? Semplicemente i moduli che permettono di leggere la partizione di root, ovvero:

  • il modulo del controller del proprio harddisk
  • il modulo del filesystem della partizione di root

Completato questo passaggio si può procedere alla modifica del file:

/etc/default/grub


Warning.png ATTENZIONE
Si consiglia di eseguire questa modifica prima di installare il kernel privo di initrd per evitare di ritrovarsi con una macchina non avviabile.


Il suddetto file va modificato poiché, senza l'initrd, il nostro sistema non sarà in grado, in fase di avvio, di riconoscere i dischi attraverso gli UUID, ma solo per mezzo degli indirizzi

/dev/sda

Con un editor di testo è necessario decommentare l'opzione

#GRUB_DISABLE_LINUX_UUID=true

rimuovendo il simbolo "#". Il passaggio conclusivo consiste nell'eseguire

# update-grub

per aggiornare la configurazione di grub.

Per un kernel ricompilato, l'initrd è generalmente inutile e rende l'avvio leggermente più lento. È anche facile sbagliare se non attivate le giuste opzioni nel kernel (vedi FAQ successiva), in tal caso otterreste un kernel panic all'avvio. L'initrd serve soprattutto per i kernel ufficiali delle distribuzioni che devono supportare tutti i controller esistenti e una gran varietà di filesystem. Sarebbe assurdo compilare tutti questi supporti staticamente e quindi vengono inseriti come moduli nel ram disk. <--

      • ATTENZIONE *** PARTE COMMENTATA *** ATTENZIONE ***

L'initrd è necessario anche se si vuole usare un bootsplash, ma questa è un'altra storia:

      • FINE PARTE COMMENTATA *** -->

La risposta lunga è quindi no, non usate l'initrd quando questo non sia strettamente necessario.

Ma il kernel non fa il boot senza initrd!

Vedi FAQ precedente. L'initrd non è necessario per fare il boot. Se il sistema non parte ciò dipende da una non corretta configurazione del kernel.

Questo è quasi sempre vero, ma ci sono delle eccezioni. In alcuni casi, quali ad esempio l'avvio da una memoria USB con filesystem di root nella stessa, può essere necessario fare uso di initrd affinché vengano generati correttamente i device (vedi sda1, sda2 ecc.). Questo pur avendo compilato tutti i moduli staticamente all'interno del kernel.

Ma se io devo usare l'initrd assolutamente?

Per usare l'intrd si deve compilare staticamente il supporto per l'initrd impostando le seguenti voci:

Device Drivers  --->
  Block devices  --->
    <*> RAM disk support
    (16)  Default number of RAM disks
    (8192) Default RAM disk size (kbytes)
    [*]   Initial RAM disk (initrd) support 

A partire dal kernel 2.6.13 si usano di default immagini del filesystem in formato cpio per cui non è più necessario aggiungere il supporto al cramfs.

Con tale configurazione è possibile compilare il kernel con initrd aggiungendo semplicemente l'opzione --initrd al comando make-kpkg. Il pacchetto risultante conterrà degli script che creeranno l'immagine initrd in fase di installazione del pacchetto.

Attualmente (Squeeze) lo strumento in Debian che permette di creare l'immagine initrd è update-initramfs (fornito dal pacchetto initramfs-tools) e utilizzabile con kernel 2.6.13 o più recenti. Questo strumento aggiunge tutti i controller del disco e i supporti che potrebbero servire per il boot che sono stati compilati come moduli;

Per ulteriori informazioni sui kernel Debian e le immagini initrd:

Posso usare make-kpkg con un kernel vanilla

Certamente, make-kpkg può essere usato indifferentemente sia con i sorgenti Debian del kernel di Linux che con i sorgenti del kernel vanilla.

I sorgenti Debian sono contenuti nei pacchetti kernel-source-* (o linux-source-* per i kernel dal 2.6.12 in poi) e sono installabili come usuali pacchetti con APT.

I sorgenti vanilla devono essere scaricati manualmente da www.kernel.org. Devono essere scompattati in /usr/src, e per il resto la procedura di compilazione è assolutamente identica al caso di sorgenti Debian.

Nel caso di sorgenti vanilla, può essere interessante vedere l'opzione debian nella sezione Compilazione del kernel, tuttavia l'uso di tale parametro è del tutto opzionale.

Errore con l'opzione --revision

Può capitare che, ricompilando il kernel variando il valore dell'opzione --revision venga rilevato un errore simile al seguente:

I note that you are using the --revision flag with the value
   2.
However, the ./debian/changelog file exists, and has a different value
   1.
I am confused by this discrepancy, and am halting.

Questo problema è semplicemente dovuto al fatto che non si è pulito il tree dei sorgenti dopo la prima compilazione. Per ovviare basta dunque:

$ make-kpkg clean

e rilanciare la compilazione.

You are attempting to install a kernel image (version version-revision) However, the directory /lib/modules/version-revision still exists.

Se si aggiorna il kernel ad una revisione successiva, durante l'installazione del pacchetto verrà fatta la seguente domanda:

You are attempting to install a kernel image (version 2.6.15.4-swsusp) However, the directory /lib/modules/2.6.15.4-swsusp still exists.  If this directory
belongs to a previous linux-image-2.6.15.4-swsusp package, and if you have deselected some modules, or installed standalone modules packages, this could be
bad. However, if this directory exists because you are also installing some stand alone modules right now, and they got unpacked before I did, then this is
pretty benign.  Unfortunately, I can not tell the difference.

If /lib/modules/2.6.15.4-swsusp belongs to a old install of linux-image-2.6.15.4-swsusp, then this is your last chance to abort the installation of this
kernel image (nothing has been changed yet). 

If this directory is because of stand alone modules being installed right now, or if it does belong to an older linux-image-2.6.15.4-swsusp package but you
know what you are doing, and if you feel that this image should be installed despite this anomaly, Please answer n to the question.

Otherwise, I suggest you move /lib/modules/2.6.15.4-swsusp out of the way, perhaps to /lib/modules/2.6.15.4-swsusp.old or something, and then try
re-installing this image.  

Stop install since the kernel-image is already installed?   

La risposta da dare è No! L'avvertimento ci ricorda che i moduli del vecchio kernel (quello con la stessa versione ma numero di revisione diverso) verranno cancellati e sostituiti dai moduli del nuovo kernel.

Questo è il comportamento normale, infatti, nel caso non si voglia sostituire un vecchio kernel ma semplicemente installarne parallelamente uno nuovo (con la stessa identica versione) si sarebbe dovuta modificare la stringa dopo --append-to-version invece che quella dopo --revision (vedi sez. Compilazione kernel).

Se il kernel che si sta sostituendo è quello in esecuzione è necessario riavviare la macchina il prima possibile!

Link

Buon divertimento con Debian GNU/Linux!




Guida scritta da: Abortigeno Swirl-auth80.png Debianized 80%
Estesa da:
~ The Noise
fw_crocodile
Lorenzoz 09:57, 11 ott 2014 (CEST)
Verificata da:
~ The Noise
Lorenzoz 09:57, 11 ott 2014 (CEST)
Oscarandrea 14:50, 8 giu 2015 (CEST)

Verificare ed estendere la guida | Cos'è una guida Debianized